{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "initial-install",
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install llama-index-llms-cometapi\n",
    "%pip install llama-index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "setup-api-key",
   "metadata": {},
   "outputs": [],
   "source": [
    "from llama_index.llms.cometapi import CometLLM\n",
    "import os\n",
    "\n",
    "# Set API key\n",
    "\n",
    "# Open the [API Keys](https://api.cometapi.com/console/token) page in CometAPI.\n",
    "# Create a new key or copy an existing one,\n",
    "# then paste it here.\n",
    "os.environ[\"COMETAPI_KEY\"] = ''\n",
    "api_key = os.getenv(\"COMETAPI_KEY\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "basic-calls",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize LLM\n",
    "llm = CometLLM(\n",
    "    api_key=api_key,\n",
    "    max_tokens=256,\n",
    "    context_window=4096,\n",
    "    model=\"gpt-5-chat-latest\",\n",
    ")\n",
    "\n",
    "# Chat call using ChatMessage\n",
    "from llama_index.core.llms import ChatMessage\n",
    "\n",
    "messages = [\n",
    "    ChatMessage(role=\"system\", content=\"You are a helpful assistant\"),\n",
    "    ChatMessage(role=\"user\", content=\"Say 'Hi' only!\"),\n",
    "]\n",
    "resp = llm.chat(messages)\n",
    "print(resp)\n",
    "\n",
    "# Use complete method\n",
    "resp = llm.complete(\"Who is Kaiming He\")\n",
    "print(resp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "streaming-calls",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Streaming chat\n",
    "message = ChatMessage(role=\"user\", content=\"Tell me what ResNet is\")\n",
    "resp = llm.stream_chat([message])\n",
    "for r in resp:\n",
    "    print(r.delta, end=\"\")\n",
    "\n",
    "# Streaming completion\n",
    "resp = llm.stream_complete(\"Tell me about Large Language Models\")\n",
    "for r in resp:\n",
    "    print(r.delta, end=\"\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "different-model",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Use Claude model\n",
    "claude_llm = CometLLM(\n",
    "    api_key=api_key, model=\"claude-3-7-sonnet-latest\", max_tokens=200\n",
    ")\n",
    "\n",
    "resp = claude_llm.complete(\"Explain deep learning briefly\")\n",
    "print(resp)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8+"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}