{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "initial-install",
"metadata": {},
"outputs": [],
"source": [
"%pip install llama-index-llms-cometapi\n",
"%pip install llama-index"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "setup-api-key",
"metadata": {},
"outputs": [],
"source": [
"from llama_index.llms.cometapi import CometLLM\n",
"import os\n",
"\n",
"# Set API key\n",
"\n",
"# Open the [API Keys](https://api.cometapi.com/console/token) page in CometAPI.\n",
"# Create a new key or copy an existing one,\n",
"# then paste it here.\n",
"os.environ[\"COMETAPI_KEY\"] = ''\n",
"api_key = os.getenv(\"COMETAPI_KEY\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "basic-calls",
"metadata": {},
"outputs": [],
"source": [
"# Initialize LLM\n",
"llm = CometLLM(\n",
" api_key=api_key,\n",
" max_tokens=256,\n",
" context_window=4096,\n",
" model=\"gpt-5-chat-latest\",\n",
")\n",
"\n",
"# Chat call using ChatMessage\n",
"from llama_index.core.llms import ChatMessage\n",
"\n",
"messages = [\n",
" ChatMessage(role=\"system\", content=\"You are a helpful assistant\"),\n",
" ChatMessage(role=\"user\", content=\"Say 'Hi' only!\"),\n",
"]\n",
"resp = llm.chat(messages)\n",
"print(resp)\n",
"\n",
"# Use complete method\n",
"resp = llm.complete(\"Who is Kaiming He\")\n",
"print(resp)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "streaming-calls",
"metadata": {},
"outputs": [],
"source": [
"# Streaming chat\n",
"message = ChatMessage(role=\"user\", content=\"Tell me what ResNet is\")\n",
"resp = llm.stream_chat([message])\n",
"for r in resp:\n",
" print(r.delta, end=\"\")\n",
"\n",
"# Streaming completion\n",
"resp = llm.stream_complete(\"Tell me about Large Language Models\")\n",
"for r in resp:\n",
" print(r.delta, end=\"\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "different-model",
"metadata": {},
"outputs": [],
"source": [
"# Use Claude model\n",
"claude_llm = CometLLM(\n",
" api_key=api_key, model=\"claude-3-7-sonnet-latest\", max_tokens=200\n",
")\n",
"\n",
"resp = claude_llm.complete(\"Explain deep learning briefly\")\n",
"print(resp)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8+"
}
},
"nbformat": 4,
"nbformat_minor": 5
}